




 Original concept from Frank Fee and Ron Corun
 1st Supplier – Trap Rock Industries – Wayne Byard and Mike 

Jopko
 NJDOT

▪ Materials - Eileen Sheehy (retired), Robert Sauber (retired)

▪ Pavement Design – Sue Gresavage (retired), Robert Blight

 Bryan Pecht 



 Gap graded aggregate blends with 
cubical shaped aggregate

 Mastic of polymer-modified asphalt 
binder, mineral filler and fibers

 When produced and placed correctly, 
known for outstanding performance



 Due to high asphalt 
contents, a potential for 
“draindown” of binder 
exists
▪ Defined as liquid binder 

running off aggregate surface

▪ Results in flushing, “fat spots” 
and segregated areas of 
heavy and low binder content



 To help reduce the potential 
of draindown, polymer-
modified asphalt (PMA) and 
fibers used with SMA
▪ PMA results in better adhesion 

to aggregate at higher temps 
than Neat binders (generally 
higher viscosity)

▪ Fibers increase 
stiffness/viscosity of mastic

Neat

PMA
+

Fibers

PMA

(NCAT)



 Cost – fibers and rental equipment
 Fibers need to be separated or 

“fluffed” prior to addition or 
clumping can occur

 Metering required and should have 
“sight glass” to ensure fibers 
flowing

 Fibers must be included in ignition 
oven correction factor 
determination
▪ Impossible to separate AC and Fiber 

changes during production from 
ignition oven testing alone



 Found in pavement surface 
during visual inspection after 
placement

 Possibly due to the “feeding 
system” at the asphalt plant





 The inclusion of fibers used to increase the viscosity of the mastic 
(binder, fines, fibers)

▪ Increased mastic viscosity will stick to aggregate better and resist 
draindown

 Utilizing an asphalt binder with higher viscosity can help increase 
mastic viscosity (i.e. – PMA vs Neat)

▪ As temperature decreases, binder viscosity increases

 Reduction in mixture temp will create compaction issues

▪ Must couple mixture temp reduction with WMA additive

▪ WMA technology that does not influence binder viscosity



▪ Utilize existing SMA design as your starting point (i.e. – asphalt content, aggregate 
blend)

▪ Determine Draindown (AASHTO T305) and compacted air voids vs Mixture 
Temperature
▪ Example:  325, 300, 280, 255oF

▪ Design: Aggregates heated 10F higher than compaction temp
▪ Compaction temperature based on binder grade 

▪ Compare draindown & compacted air voids to allowable design/production values – determine 
optimum temperature range
▪ Recommend to run Gmm at each temp

▪ Visually examine mixing process to ensure coating is taking place 
▪ Can utilize AASHTO T195, Degree of Particle Coating as a guide

▪ Make slight mixture adjustments if necessary
▪ In general, have found for every 0.1% of fibers removed, asphalt plant will need to remove same 

amount of asphalt binder
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 Potential changes in optimum 
AC%

▪ Reduction in temperature 
increases binder viscosity making 
absorption more difficult

▪ Results in higher effective AC%

▪ Eliminating fibers will reduce the 
surface area of the “solids”, 
increasing “free” asphalt which 
could lead to increased 
draindown

WMA                           HMA

(Dale Rand, TxDOT)

(John Bukowski, 
FHWA)





 Determine Optimal 
Temperature for Fiberless
SMA in MD 

▪ 12.5 mm NMAS SMA

▪ 6.5% Asphalt Content

▪ PG76-22 

▪ 0.3% Cellulose Fibers

▪ 0.04% Draindown at Design

▪ Specification < 0.3%

W a s h e d  G r a d a t i o n

Screen % Pass

2” 50.00 100
1 ½” 37.50 100
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¾” 19.00 100
½” 12.50 96

3/8” 9.50 80
#4 4.75 34
#8 2.36 21

#16 1.18 17
#30 0.600 15
#50 0.300 13

#100 0.150 12
#200 0.075 9.3
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 Final Result

▪ Optimal temp range for mixture between 265 and 255oF.

▪ In that range;

▪ Air voids slightly above 4%

▪ Draindown around 0.2 to 0.25% (specification is 0.3%)

▪ All aggregates coated after mixing

 Final production

▪ Maintained asphalt content and slight increase filler content

▪ Increased filler to help close up air voids and reduce draindown

▪ Contractor and agency extremely happy with final product



 Determine Optimal Temperature 
Range for Fiberless SMA in VA 

▪ 12.5mm NMAS SMA

▪ 6.7% Total Asphalt Content

▪ PG76-22

▪ 15% RAP

▪ 0.4% Total Binder Weight Contribution

▪ 0.3% Cellulose Fibers

▪ 0.14% draindown

W a s h e d  G r a d a t i o n

Screen % Pass

2” 50.00 100
1 ½” 37.50 100

1” 25.00 100
¾” 19.00 100
½” 12.50 95

3/8” 9.50 75
#4 4.75 30
#8 2.36 19

#16 1.18 14
#30 0.600 13
#50 0.300 12

#100 0.150 11
#200 0.075 8.5



5.9

3.3

3.83.9 2.37

1.54

0.61

0.34
0

0.5

1

1.5

2

2.5

3

3.5

0

1

2

3

4

5

6

7

250 260 270 280 290 300 310 320 330

D
ra

in
d

o
w

n
 (

%
)

C
o

m
p

ac
te

d
 A

ir
 V

o
id

s 
(%

)

Mix Temperature (oF)

6.7% Total Asphalt Content (6.3% Virgin Binder)
(Baseline Mix with Fibers:  325oF; 0.14% Draindown; 4.4% Compacted Air Voids)

Compacted Air Voids

Draindown

High Draindown created
issues with compaction



 1st Trial Results

▪ Testing showed that air voids were slightly low and Draindown was 
still above specification

▪ Coating easily met at all temperatures

▪ For this particular mix, the elimination of fibers is creating an slightly 
over-asphalted mix

▪ For Trial #2, asphalt content was reduced 0.3% (same % as original 
fibers) and testing was again conducted
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 For the Design Example #2 SMA, eliminating fibers created an 
over-asphalted condition

▪ Fibers creating surface area – taking up additional asphalt

 2nd trial showed a reduction of 0.3% asphalt was required to 
maintain draindown

 Final design

▪ Supplier used 6.4% total asphalt content while increasing dust to 
help tighten up air voids





 First project to look at fiberless
SMA with WMA (2009)

 Location:  Rt 1, SB in New 
Jersey (MP 6.5 to 7.8)
▪ Rt 1 NB constructed with 

conventional SMA
 Trap Rock aggregate 
 12.5mm SMA

▪ 6.4% AC content

▪ PG76-22

▪ 0.3% cellulose fibers

W a s h e d  G r a d a t i o n

Screen % Pass

2” 50.00 100

1 ½” 37.50 100

1” 25.00 100

¾” 19.00 100

½” 12.50 94

3/8” 9.50 63

#4 4.75 28.2

#8 2.36 19.8

#200 0.075 8.8



Mixing Testing
Normal SMA 325 325 0.08

WMA SMA #1 (No Fibers) 325 325 0.19
WMA SMA #2 (No Fibers) 290 290 0.08
WMA SMA #3 (No Fibers) 255 255 0.06

Mixture ID Percent 
Draindown 

Temperature (F)

 Air voids ranged between 3.8% to 4.4%
 Aggregate coating no issue

Supplier did own assessment of compacted air voids









 Field Core Density

▪ Normal SMA Density = 5.13% air voids

▪ Produced over 315F

▪ WMA SMA Density = 5.12% air voids

▪ Produced under 280F
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# 1 10,472
# 2 27,855
# 3 16,255

SMA - WMA with No Fibers

77 F 0.025"

Average (Trimmed Mean) = 18,194

Sample ID Temp (F)
Displacement 

(inches)

Fatigue Life 

(cycles)

# 1 2,126
# 2 2,425
# 3 1,458

SMA - Normal Production

Sample ID Temp (F)
Displacement 

(inches)

Fatigue Life 

(cycles)

77 F 0.025"

Average (Trimmed Mean) = 2,003



 For initial pilot, reduction in production temp successfully reduced 
draindown when fibers eliminated 
▪ Produced @ 275 to 285oF

▪ 1st Roller Pass @ 270 to 280oF
 Field densities of with and without fibers statistically equal
 Mixture performance looked good

▪ Lower production temps not aging binder as normal
▪ Stiffness slightly lower

▪ Large increase in fatigue resistance (higher effective AC?)

One Complaint!





 Produced 1st Fiberless SMA and over 7 projects since 2009
▪ Mix Design

▪ Able to reduce asphalt binder content by 0.4% while still improving fatigue properties.  
Reduction in binder more than paid for addition of WMA additive

▪ Fiberless eliminated the need for purchasing, delivering, stockpiling and protecting 
fibers – no rental costs

▪ Can take an order of SMA one day and start producing the next

▪ No plant modifications necessary

▪ Field/Compaction
▪ Workability (hand work) and compaction excellent, even as low as 265F in the northeast

▪ Ship 1st load or two at normal temp to heat up MTV and paver, then go back to warm 
mix temps

▪ No issues with material sticking to truck bodies 



 Produced 2 Fiberless projects in north Jersey
▪ Mix Design

▪ Reduced asphalt content by 0.4% - lab testing at Rutgers showed good fatigue cracking 
performance

▪ Saved costs on both no fibers and reduced asphalt content

▪ Plant Production 
▪ No plant modifications necessary during production

▪ Production 28o to 290F with PG76-22 compared to > 325F

▪ Field/Compaction
▪ Better workability than conventional SMA

▪ Truck bodies clean

▪ Compaction still as low as 170F – densities better than 94% Gmm





 Temperature control
▪ Fluctuations greatly affect 

draindown
▪ If designing and producing to be 

fiberless, must maintain temperatures 
as fiberless

 Good SMA design and 
production practices
▪ Gradation

▪ Breakpoint sieve

▪ VCA

▪ Dust content
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 Asphalt Binder:  Nick Cytowicz, Chris Ericson
 Asphalt Mixture: Ed Haas, Drew Tulanowski, Ed Wass Jr.
 Funding provide by University Transportation Research 

Center (UTRC) grant
 Large part of work conducted on NJ COVID restrictions!



 Obvious interest in finding a means 
to reduce landfilling of used plastic
▪ Limited alternative uses

 NAPA asked if recycled plastic could 
be incorporated within HMA

▪ Recycled rubber tires

▪ Recycled asphalt shingles 

▪ Need to make sure pavements do not 
become linear landfills!

(NAPA, 2020)



 Some general issues to 
consider;
▪ Consistency & Handling

▪ Plastic waste stream highly variable
▪ Melting points ≈212F to ≈500F

▪ Differences in impact on asphalt 
performance 

▪ Micro-plastics
▪ Literature shows majority of field 

projects have used recycled plastics 
with a dry process

▪ Can micro-plastics be generated 
during production?  Milling? 

(Nature, 2021)



 Some efforts in plastic industry to 
pelletize and process different waste 
streams

▪ Provides level of sorting and consistency

▪ Volume reduction & transport ease
(Plastics Industry Assoc., NEMO Meeting, 2019)



 Study evaluated “processed” 
recycled plastic material 
▪ MR6 – “complex arrangement of 

polyolefins”
▪ Bags, electrical cable coating, food 

packaging, crates/boxes, outdoor 
furniture

▪ MR8 – “thermoplastic polymer”
▪ Sports equipment, CD/DVD’s, drinking 

bottles, car parts, toys (LEGO’s)

▪ MR10 – “co-block polymer”
▪ PVC, Teflon, injection molding

MR6                               MR8                                       MR10



 Research workplan

▪ Asphalt binder testing

▪ Used to determine “optimum” dosage

▪ Separation was of major importance

▪ High temperature
▪ MSCR, PG grading

▪ Intermediate temperature
▪ DENT, Glover-Rowe, Loss Tangent

▪ Low temperature

▪ PG grading, DTc, ABCD

▪ Original, RTFO, 20 Hr PAV, 40 Hr PAV



 Research workplan
▪ Asphalt mixture testing

▪ Use “optimum” plastic and dosage in a 
wet process

▪ Use a product in the dry process
▪ Stiffness

▪ E*

▪ Rutting
▪ APA, Hamburg, Flow Number, HT-IDT

▪ Cracking
▪ Overlay Tester, IDEAL-CT, SCB FI, Flexural 

Beam, DC(T)

▪ Moisture Damage
▪ TSR and Hamburg

▪ Short-term and Long-term conditioned





 Binders prepared using high 
shear mixer

▪ 165C for 4 hours (as per 
manufacturer rec.)

▪ Slotted disintegrating head on 
Silverson mixer

▪ No crosslinker or compatibilizer 
used

▪ Dosage rates of 3, 6, 9% by total 
weight of asphalt binder

▪ PG58-28 & PG64-22



 Separation (ASTM D7173)
▪ Will the modifier separate from the 

asphalt binder
▪ Pour 50 grams of blended binder in “cigar 

tube” and seal

▪ Maintain vertical in oven for 48 hours @ 
163C

▪ Remove from oven & place vertically in 
freezer (0 to -20C) for greater than 4 hrs

▪ Remove and cut into 1/3 – place upper 
and lower 1/3 in container, heat and 
pour out contents 

▪ Traditionally used with softening point
▪ High temperature DSR
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 Separation

▪ MR6 showed greatest 
potential for separation

▪ Mechanically and visually

▪ MR8 showed lowest potential 
(comparable to base binders)

Could not test



135C 165C Jnr (1/kPa) % Rec

MR6

MR8

MR10 0.884 0.243 74

1.66 4 24.1 -24.7 -21.5 -3.2

-27.7 -26.9 -0.8

3% 0.65 0.175

64-22

64-22

64-22

23.9 -24.3 -16.5 -7.8

Rotational Viscosity 

(Pa s)

Low Temperature PG Grade

-4.8

9% 6.75 0.47 79.5 78.9 0.65 16.6

74.2 1.15 9.1 24.7 -25 -20.26%

71.1 71.4

-26.3 -0.5

9% 0.5232 0.142 67.1 66.3 3.01 0.2 19.3

-2.3

6% 0.469 0.129 66.4 67.1 3.1 1 22.2 -26.8

67.1 3.04 0.8 22.7 -26.2 -23.93% 0.463 0.127 67.2

25 27.3 -23.4

3% 0.812

-16.7 -6.7

9%

0% 0.4275 0.117 66.6

26.1 -24

6% 1.612 0.519 78.1 85.6 0.286

N.A.

Intermedi

ate Temp 

PG Grade
DTcm-Value

Stiffness 

(S)

64-22 67.1 3.28 0.0 21.7

Dosage 

Rate
Additive

Base 

Binder RTFOOriginal

High Temperature PG Grade

MSCR @ 64C

-25.5 -24.8 -0.7

58-28 N.A. 0% 0.21

22.3 -27 -26.1 -0.976-22 N.A. 0% 1.538 0.385 78.1 78.1 0.232 68.3

0.065 55.7 55.8 12.09 0.0 10.8 -33.1 -36.8 3.7

0.282 73.7 74.7 1.1 3.2 -21.1 -2.9
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 MR6 
(polyolefins)

▪ Gain high 
temperature 
stiffness

▪ Lose m-value 
(relaxation)

▪ Increased 
viscosity
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0.282 73.7 74.7 1.1 3.2 -21.1 -2.9

 MR8 
(thermoplastic)

▪ No change in 
high temp

▪ Slight 
improvement 
in Int. & low 
temp

▪ No significant 
change in 
viscosity



135C 165C Jnr (1/kPa) % Rec

MR6

MR8

MR10 0.884 0.243 74

1.66 4 24.1 -24.7 -21.5 -3.2

-27.7 -26.9 -0.8

3% 0.65 0.175

64-22

64-22

64-22

23.9 -24.3 -16.5 -7.8

Rotational Viscosity 

(Pa s)

Low Temperature PG Grade

-4.8

9% 6.75 0.47 79.5 78.9 0.65 16.6

74.2 1.15 9.1 24.7 -25 -20.26%

71.1 71.4

-26.3 -0.5

9% 0.5232 0.142 67.1 66.3 3.01 0.2 19.3

-2.3

6% 0.469 0.129 66.4 67.1 3.1 1 22.2 -26.8

67.1 3.04 0.8 22.7 -26.2 -23.93% 0.463 0.127 67.2

25 27.3 -23.4

3% 0.812

-16.7 -6.7

9%

0% 0.4275 0.117 66.6

26.1 -24

6% 1.612 0.519 78.1 85.6 0.286

N.A.

Intermedi

ate Temp 

PG Grade
DTcm-Value

Stiffness 

(S)

64-22 67.1 3.28 0.0 21.7

Dosage 

Rate
Additive

Base 

Binder RTFOOriginal

High Temperature PG Grade

MSCR @ 64C

-25.5 -24.8 -0.7

58-28 N.A. 0% 0.21

22.3 -27 -26.1 -0.976-22 N.A. 0% 1.538 0.385 78.1 78.1 0.232 68.3

0.065 55.7 55.8 12.09 0.0 10.8 -33.1 -36.8 3.7

0.282 73.7 74.7 1.1 3.2 -21.1 -2.9

 MR10 (co-block 
polymers)

▪ Gain high 
temperature 
stiffness

▪ Lose m-value 
(relaxation)

▪ Increased 
viscosity



 Glover-Rowe 
Parameter
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 Double Edge Notched Tension 
(DENT)

▪ Measure of asphalt binder’s 
ductility

▪ Conducted at 25C

▪ Compared crack tip opening 
displacement (CTOD)

20 hr PAV



 Asphalt Binder Cracking Device 
(ABCD)
▪ The ABCD determines the critical 

cracking temperature due to thermally 
induced stress

▪ Asphalt binder poured between an invar 
and latex mold to form a ring

▪ Chamber cools the specimens at                  
-20oC per hr

▪ Strain gauge determines when “cracking” 
occurs; specimen temperature when this 
occurs is determined as Tcr

▪ NCHRP 9-60 recommends to use in 
conjunction with DTc
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 ABCD Testing Results

R² = 0.7649
R² = 0.4326
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 The MR8 (Thermoplastic) resulted in the 
better performance

▪ Little to no change in HT; slight 
improvement in LT; lower potential to 
separate; best for “fatigue” analysis

 MR6 (PP/PE) pulled PG grade warmer 
and separated

 MR10 (Co-block) pulled PG grade 
warmer but not as bad for separation 





 Wet Process

▪ Selected MR8 at 6% to 9% by total weight of binder based on binder results

 Dry Process

▪ Selected MR6 at 1% by weight of mix

▪ Used dry in other projects (VTRC, 2021)

 9.5mm NMAS, Trap Rock aggregate

▪ 6.1% asphalt content

▪ No RAP

▪ VMA = 17.1%

 Short-term (4 hrs, 135C) and Long-term Conditioned (24 hrs, 135C)



 Rutting evaluated using;

▪ Asphalt Pavement Analyzer (64oC)

▪ Hamburg (50oC)

▪ High Temperature IDT (44oC)

▪ AMPT Flow Number (54oC)

 Mixtures were only conditioned 
for short term conditioning
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 No mix showed an inflection point during Hamburg testing
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MR8 (Wet Process; 9% by Wt. of Binder) MR6 (Dry Process; 1% by Wt. of Mix)





 Inclusion of plastic will 
impact the volumetrics of 
your design and production

▪ Statistically significant when 
using the dry process

▪ Need to take into account for 
Gmm and Gsb

Mix Type Gmm (g/cm3)
64-22 2.670
76-22                        2.670
6% MR8                  2.683
9% MR8                  2.682
1% Dry MR6          2.628

Mix Type Gsb (g/cm3)
Wet Process          2.964  
Dry Process           2.897



 Recycled plastic remaining as part of aggregate

▪ Some will float during washed gradation 



 Recycled plastic will come up as 
mass loss in dry process

 Will need to include in correction 
factor (similar to fibers in SMA 
and OGFC)

▪ Design AC%: 6.1%

▪ Burn (Control):  6.14% loss

▪ Burn (Dry MR6): 7.06% loss

▪ Additional 1% from the addition of 
plastic at 1% by total weight of mix



 The type of recycled plastic will 
significantly impact asphalt performance

▪ Wet process vs Dry process?

▪ Selection of plastic type?

 Moving forward in NJ, pilots proposed

▪ Ran through Associated Asphalt Paulsboro 
facility as proof of concept

▪ Moving forward to 2 to 3 pilot projects in NJ 
in 2022

▪ Part of FHWA study to evaluate equipment to 
identify presence of micro-plastics




